Edge Clique Covering Sum of Graphs
نویسندگان
چکیده
The edge clique cover sum number (resp. edge clique partition sum number) of a graph G, denoted by scc(G) (resp. scp(G)), is defined as the smallest integer k for which there exists a collection of complete subgraphs of G, covering (resp. partitioning) all edges of G such that the sum of sizes of the cliques is at most k. By definition, scc(G) 5 scp(G). Also, it is known that for every graph G on n vertices, scp(G) 5 n/2. In this paper, among some other results, we improve this bound for scc(G). In particular, we prove that if G is a graph on n vertices with no isolated vertex and the maximum degree of the complement of G is d− 1, for some integer d, then scc(G) 5 cnd ⌈log ((n− 1)/(d− 1))⌉, where c is a constant. Moreover, we conjecture that this bound is best possible up to a constant factor. Using a well-known result by Bollobás on set systems, we prove that this conjecture is true at least for d = 2. Finally, we give an interpretation of this conjecture as an interesting set system problem which can be viewed as a multipartite generalization of Bollobás’ two families theorem.
منابع مشابه
On the variable sum exdeg index and cut edges of graphs
The variable sum exdeg index of a graph G is defined as $SEI_a(G)=sum_{uin V(G)}d_G(u)a^{d_G(u)}$, where $aneq 1$ is a positive real number, du(u) is the degree of a vertex u ∈ V (G). In this paper, we characterize the graphs with the extremum variable sum exdeg index among all the graphs having a fixed number of vertices and cut edges, for every a>1.
متن کاملCohen-Macaulay $r$-partite graphs with minimal clique cover
In this paper, we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is Cohen-Macaulay. It is proved that if there exists a cover of an $r$-partite Cohen-Macaulay graph by disjoint cliques of size $r$, then such a cover is unique.
متن کاملGraph Operations on Clique-Width Bounded Graphs
In this paper we survey the behavior of various graph operations on the graph parameters clique-width and NLC-width. We give upper and lower bounds for the clique-width and NLC-width of the modi ed graphs in terms of the clique-width and NLC-width of the involved graphs. Therefor we consider the binary graph operations join, co-join, sum, di erence, products, corona, substitution, and 1-sum, an...
متن کاملEdge pair sum labeling of some cycle related graphs
Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...
متن کاملClique Coverings of Glued Graphs at Complete Clones
A clique covering of a graph G is a set of cliques of G in which each edge of G is contained in at least one clique. The smallest cardinality of clique coverings of G is called the clique covering number of G. A glued graph results from combining two nontrivial vertex-disjoint graphs by identifying nontrivial connected isomorphic subgraphs of both graphs. Such subgraphs are referred to as the c...
متن کامل