Edge Clique Covering Sum of Graphs

نویسندگان

  • A. DAVOODI
  • R. JAVADI
  • B. OMOOMI
چکیده

The edge clique cover sum number (resp. edge clique partition sum number) of a graph G, denoted by scc(G) (resp. scp(G)), is defined as the smallest integer k for which there exists a collection of complete subgraphs of G, covering (resp. partitioning) all edges of G such that the sum of sizes of the cliques is at most k. By definition, scc(G) 5 scp(G). Also, it is known that for every graph G on n vertices, scp(G) 5 n/2. In this paper, among some other results, we improve this bound for scc(G). In particular, we prove that if G is a graph on n vertices with no isolated vertex and the maximum degree of the complement of G is d− 1, for some integer d, then scc(G) 5 cnd ⌈log ((n− 1)/(d− 1))⌉, where c is a constant. Moreover, we conjecture that this bound is best possible up to a constant factor. Using a well-known result by Bollobás on set systems, we prove that this conjecture is true at least for d = 2. Finally, we give an interpretation of this conjecture as an interesting set system problem which can be viewed as a multipartite generalization of Bollobás’ two families theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the variable sum exdeg index and cut edges of graphs

The variable sum exdeg index of a graph G is defined as $SEI_a(G)=sum_{uin V(G)}d_G(u)a^{d_G(u)}$, where $aneq 1$ is a positive real number,  du(u) is the degree of a vertex u ∈ V (G). In this paper, we characterize the graphs with the extremum variable sum exdeg index among all the graphs having a fixed number of vertices and cut edges, for every a>1.

متن کامل

Cohen-Macaulay $r$-partite graphs with minimal clique cover

‎In this paper‎, ‎we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is Cohen-Macaulay‎. ‎It is proved that if there exists a cover of an $r$-partite Cohen-Macaulay graph by disjoint cliques of size $r$‎, ‎then such a cover is unique‎.

متن کامل

Graph Operations on Clique-Width Bounded Graphs

In this paper we survey the behavior of various graph operations on the graph parameters clique-width and NLC-width. We give upper and lower bounds for the clique-width and NLC-width of the modi ed graphs in terms of the clique-width and NLC-width of the involved graphs. Therefor we consider the binary graph operations join, co-join, sum, di erence, products, corona, substitution, and 1-sum, an...

متن کامل

Edge pair sum labeling of some cycle related graphs

Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...

متن کامل

Clique Coverings of Glued Graphs at Complete Clones

A clique covering of a graph G is a set of cliques of G in which each edge of G is contained in at least one clique. The smallest cardinality of clique coverings of G is called the clique covering number of G. A glued graph results from combining two nontrivial vertex-disjoint graphs by identifying nontrivial connected isomorphic subgraphs of both graphs. Such subgraphs are referred to as the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016